
Reference manual
version 2.0.0

Contents

1 Introduction 7

1.1 Domain Name System . 8

1.1.1 Zones . 8

1.1.2 Authoritative name servers . 9

2 Resource Requirements 11

2.1 Hardware . 11

2.2 CPU . 11

2.3 Memory . 11

2.4 Supported Operating Systems . 11

3 Installation 12

3.1 Server installation . 13

3.2 Client installation . 14

4 Server configuration 17

4.1 An authoritative name server . 18

4.1.1 Primary name server . 18

4.1.2 Slave name server . 19

0 0 2

4.2 Signals . 19

5 Server Technical 21

5.1 Zone file reader . 21

5.1.1 Known types . 22

6 Client 23

6.1 YADIFA . 23

6.1.1 Commands . 24

7 Domain Name System Security Extensions (DNSSEC) 30

7.1 Introduction . 30

7.2 DNSSEC overview . 30

7.3 Types of key pairs . 32

7.4 Algorithms . 32

8 DNS Name Server Identifier Option (NSID) 33

8.1 Introduction . 33

8.2 NSID payload . 33

9 DNS Response Rate Limiting 35

9.1 Introduction . 35

9.2 What is it? . 35

9.3 The problem . 35

9.4 A solution . 36

10 Configuration reference 37

10.0.1 Layout . 37

10.1 Types . 39

10.2 Sections . 39

11 Zones 56

11.1 MACROS . 56

11.1.1 @ . 57

11.1.2 $TTL . 57

11.1.3 $ORIGIN . 58

11.2 Classes . 59

11.3 Resource record types . 59

12 Statistics 60

Bibliography 63

List of Figures

1.1 DNS hierarchy . 9

0 0 5

List of Tables

10.1 Types . 39

10.2 Parameters main section . 42

10.3 Parameters zone sections . 45

10.4 Parameters key sections . 46

10.5 Parameters syslog . 49

10.6 Parameters for channels . 50

10.7 logger sources . 52

10.8 logger levels . 52

10.9 Parameters nsid section . 54

10.10Types . 54

0 0 6

1 Introduction

YADIFA is a name server implementation developed by EURid vzw/absl, the registry for the
.eu top-level domain. EURid vzw/absl developed YADIFA to increase the robustness of the .eu
name server infrastructure by adding a stable alternative to the other name server implementations
in use.

In a nutshell, YADIFA:

is an authoritative name server, in both a master and slave configuration

is RFC compliant

is portable across multiple Operating Systems including GNU/Linux, BSD and OSX

is written from scratch in C. It is a clean implementation, which uses the openssl library.

supports EDNS0[11]

supports DNSSEC with NSEC[1] and NSEC3[2]

has full and incremental zone transfer handling (AXFR[5] and IXFR[8]).

The secondary design goals for YADIFA are to:

Be a caching name server

Be a validating name server

Have a backend which is Structured Query Language (SQL)-based1

Allow dynamic zone updates

Allow dynamic provisioning of zones without restart.

1YADIFA will read zone from files and SQL-based backends

0 0 7

http://www.eurid.eu
http://www.eurid.eu
http://www.ietf.org/rfc.html

In future releases new features will be added:

recursion

caching

validation

split horizon

plug-in system to integrate with EURid vzw/absl’s proprietary systems

dynamic provisioning of new domain names

DNSSEC signing service

1.1 Domain Name System

The Domain Name System (DNS) is a system and network protocol used on the Internet. DNS is
a globally distributed database with domain names, which can translate those domain names into
IP addresses and vice versa. All Internet-connected systems (routers, switches, desktops, laptops,
servers, etc.) use DNS to query DNS servers for a IP addresses.

DNS is used by most services on the Internet. Mail, which itself uses the SMTP-protocol, uses
DNS to get information about where to send emails.

DNS is an hierarchical, distributed system (see figure 1.1). One DNS server cannot hold all the
information.

If you want to surf to http://www.eurid.eu for example, your computer needs the IP address of
www.eurid.eu. Via the root server which guides you to the eu servers, which in turn guides you to
the eurid name servers, where you will get the IP address of www.eurid.eu.

1.1.1 Zones

The information about a domain name can be found in zones. In these zones you will not only find
a website’s IP address, eg. www.eurid.eu, or a mail server’s IP address, but also the information
that points you to a subsection of the zone.

To clarify:
To find the IP address of www.eurid.eu, you start your search at the root server. You are not
given the website’s IP address, but are pointed in the direction where you will be able to find the
information. The root server points you to a subsection of its zone, it points you to the name
server(s) of .eu. This we call a delegation. The zone information has a NS resource record which
contains the names of the .eu name servers. In the .eu zone information you will still not find

0 0 8

http://www.eurid.eu

www
ftp
mail

... eurid ...

...eu com gov info

root

Figure 1.1: DNS hierarchy

the IP address of the www.eurid.eu website, but you will find the delegation to the next domain
name, eurid.eu. In the name servers of eurid.eu you will find in the zone information, including
the IP address of www.eurid.eu.

1.1.2 Authoritative name servers

Name servers with all the information for a particular zone are the authoritative name servers for
that zone. When querying the information of a domain name with an authoritative name server,
the name server will give not only the answer, but will also indicate that it is authoritative for
the information it has provided, by sending an Authoritative Answer flag along with the result.

For redundacy purposes a zone does not have only one authoritative name server. Good practice
is to have a second and/or third name server in a different sub network.

Primary name server

Only one name server has the original zone information. Most name servers have this kind of
information in a text file, also known as a zone file. Which authoritative name server is the
primary name server of a domain name can be found in the start of authority (SOA) resource
record. This information can be obtained from any of the domain name’s authoritative name

0 0 9

server(s).

Sometimes a primary name server is called master name server.

Secondary name server

The secondary name server has the same information as the primary name server, but differs
in that it does not have the original zone file. A secondary name server receives its initial
information from a transfer of the primary name server. There are several techniques for getting
this information.

Sometimes a secondary name server is called slave name server.

0 1 0

2 Resource Requirements

2.1 Hardware

2.2 CPU

The CPU must be able to handle 64-bit integers (natively or through the compiler). It has to run
a memory model where the data pointer size must be equal to the code pointer size. Threading is
also required.

2.3 Memory

One record takes about 135 bytes of memory. Enabling DNSSEC is more expensive and triples
that value. At runtime, zone management and processing may require additional storage space, up
to 150% of the zone file size.

2.4 Supported Operating Systems

YADIFA has been compiled for x86, x86 64 on GNU/Linux (UBUNTU, Red Hat), FreeBSD and
OSX. Other Unix flavours and Windows support are planned.

0 1 1

3 Installation

The current version of YADIFA is: 2.0.0

YADIFA is a collection of one daemon, yadifad ; four libraries; two man pages, yadifad.1 and
yadifad-conf.5 ; and example configuration files.

The libraries are:

dnscore

dnsdb

dnszone

dnslg.

Everything can be installed in a GNU fashion with configure, make and make install.

YADIFA is tested with:

GCC 4.6

CLANG 3.1-2

ICC 12.1.3.

If you want to compile YADIFA for a certain compiler you need to add the “CC” environmental
variable:

./configure CC=gcc-4.6

or

0 1 2

./configure CC=clang

or

./configure CC=icc

3.1 Server installation

YADIFA has several components:

A daemon yadifad

A man page yadifad.1

A man page yadifad-conf.5

A yadifad.conf.example file.

If we install yadifa in /opt/ we set the install prefix to /opt/

install_prefix=’/opt/’

tar zxvf yadifa-0.1.0-xxxx.tar.gz

cd yadifa-0.1.0-xxxx

./configure --prefix=${install_prefix}/yadifa/

make

sudo make install

After the installation a tree structure with files will have been created:

${install_prefix}/bin/

${install_prefix}/etc/

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

0 1 3

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

${install_prefix}/lib/

${install_prefix}/sbin/

${install_prefix}/share/man/man1/

${install_prefix}/share/man/man5/

${install_prefix}/var/log/

${install_prefix}/var/run/

${install_prefix}/var/zones/keys/

${install_prefix}/var/zones/masters/

${install_prefix}/var/zones/slaves/

${install_prefix}/var/zones/xfr/

The most important files are found in:

${install_prefix}/etc/yadifad.conf

${install_prefix}/sbin/yadifad

${install_prefix}/share/man/man1/yadifad.1

${install_prefix}/share/man/man5/yadifad-conf.5

Depending on the manner of compilation you will find the libraries in:

${install_prefix}/lib/

and the include files in:

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

3.2 Client installation

YADIFA has several components:

A remote access tool yadifa for the server yadifad

A name server lookup tool yadifa

A man page for yadifa yadifa.1.

0 1 4

If we install yadifad in /opt/ we set the install prefix to /opt/. For the client software you need to
“configure” with –with-tools.

install_prefix=’/opt/’

tar zxvf yadifa-0.1.0-xxxx.tar.gz

cd yadifa-0.1.0-xxxx

./configure --prefix=${install_prefix}/yadifa/ --with-tools

make

sudo make install

After the installation a tree structure with files will have been created:

${install_prefix}/bin/

${install_prefix}/etc/

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

${install_prefix}/lib/

${install_prefix}/sbin/

${install_prefix}/share/man/man1/

${install_prefix}/share/man/man5/

${install_prefix}/var/log/

${install_prefix}/var/run/

${install_prefix}/var/zones/keys/

${install_prefix}/var/zones/masters/

${install_prefix}/var/zones/slaves/

${install_prefix}/var/zones/xfr/

The most important files are found in:

${install_prefix}/etc/yadifad.conf

${install_prefix}/bin/yadifa

${install_prefix}/sbin/yadifad

${install_prefix}/share/man/man1/yadifa.1

${install_prefix}/share/man/man1/yadifad.1

${install_prefix}/share/man/man5/yadifad-conf.5

and the include files in:

0 1 5

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

0 1 6

4 Server configuration

YADIFA is an authoritative name server only. Currently it does not have the functionalities to
be a caching name server, a validating name server or a forwarder.

YADIFA can start up without prior configuration, it just needs an empty configuration file. Of
course with an empty configuration file it does not do much, but you can test certain functionalities.
It will answer queries, but with no zones configured it will return a flag which indicates that the
query has been refused (REFUSED). This flag will be explained later in the manual.

All logs will be will be sent to the standard output.

The YADIFA configuration file has eight sections:

main (see 10.2)

zone (see 10.2)

key (see 10.2)

acl (see 10.2)

channels (see 10.2)

loggers (see 10.2)

nsid (see 10.2)

rrl (see 10.2).

Each section has its own set of configuration elements.

main contains all the configuration parameters needed to start up YADIFA

zone contains all the configuration parameters needed for the zones

channel and loggers are needed to configure your log information

0 1 7

key contains TSIG[4]information

nsid contains the “DNS Name Server Identifier Option”

rrl contains the “Response Rate Limiting in the Domain Name System”.

4.1 An authoritative name server

To allow YADIFA to answer queries for its domain names, you have to declare them to the zone
section.

4.1.1 Primary name server

An example of a zone with domain name somedomain.eu.

For example:

<zone>

domain somedomain.eu

file masters/somedomain.eu.txt

type master

</zone>

Where:

domain is the full qualified domain name

file is the absolute or relative path of the zone file in text format

type is the kind of name server YADIFA is for this zone. type can be:

– Master

– Slave.

In this example, YADIFA is configured as a master. This means that the original zone file is on
this server and you need to edit the zone file on this server.

Note:

For a working example you can find the zone file on page 56.

0 1 8

4.1.2 Slave name server

YADIFA is authoritative for the zone somedomain.eu, but does not have the original information.
YADIFA needs to get the information from a master for this zone file.

For example:

<zone>

domain somedomain.eu

file slaves/somedomain.eu.txt

type slave

master 192.2.0.1

</zone>

In this example the type changes to slave. YADIFA needs to know where it can find the master
zone file. This will be done with the additional configuration parameter master, where you can
specify the IP address of the master name server for this domain name.

4.2 Signals

On a unix-like operating systems you can send a signal to a process, this is done with the kill
command.

A few signals are implemented:

SIGTERM will shutdown YADIFA properly

SIGHUP will reopen the log files

SIGUSR1 will save all zone files to disk.

For example:

ps -ax | grep yadifad

67071 2 S+ 0:03.47 ./yadifad

kill -HUP 67071

#

0 1 9

0 2 0

5 Server Technical

For now there are three entry points to the database:

1. Zone File

2. AXFR[5] and IXFR[8]

3. DNS UPDATE[10].

All three use the same principles to accept a resource record:

First-come, first-served

Semantic errors will drop the relevant resource record

Syntax errors will drop the relevant entity.

Dropping the relevant entity can mean several things. If a syntax error occurs in a DNS UPDATE[10]
just this package will be dropped and not the relevant zone file. A syntactical error can be a typo,
but for security reasons the entity will be dropped completely.

If a syntax error is not a typo, but something against the RFCs, only that resource record will be
dropped.

5.1 Zone file reader

The zone file reader will check each resource record as a single entity. Inconsistencies are only
checked once the whole zone has been loaded.

What are inconsistencies?

The apex of a zone file

0 2 1

http://www.ietf.org/rfc.html

Semantics of a resource record

CNAME’s alongside non-cname’s

Non-CNAME’s alongside cname’s

Non-existing MACROS/DIRECTIVES (eg.typos in MACROS/DIRECTIVES).

5.1.1 Known types

For more information see 11.3.

0 2 2

6 Client

YADIFA comes with one client:

1. yadifa

6.1 YADIFA

yadifa is the tool used to access the yadifad servers. yadifa can be used to configure a name server
and control a name server.

yadifa communicates with the name server over a TCP connection. This communication can be
authenticated with TSIG[4]’s. This TSIG[4] can be given via the command line or a configuration
file.

If you want to have control support in YADIFA you need to enable this function before compiling
the sources.

./configure --enable-ctrl

After the ‘configure’, you can do the normal ‘make’ and ‘make install’.

make

make install

0 2 3

Note:

You also need to add ’allow-control’ in the main section of yadifad.conf (10.2).

6.1.1 Commands

TYPES ARGUMENTS

SHUTDOWN
FREEZE somedomain.eu
UNFREEZE somedomain.eu
FREEZEALL
UNFREEZEALL
RELOAD somedomain.eu
ZONECFGRELOAD somedomain.eu

shutdown

This command shutdowns the server.

For example:

./yadifa -s 192.0.2.1 -t SHUTDOWN

Gives as result:

0 2 4

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOTAUTH, id: 57004

;; flags: qr QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11009

;; Query time: 0 msec

;; WHEN: Mon Sep 29 14:46:50 2014

;; MSG SIZE rcvd: 17

freeze

This command suspends updates to a zone. No more modifcation (dyn DNS) can be done.

For example:

./yadifa -s 192.0.2.1 -t FREEZE -q somedomain.eu

Gives as result:

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 3507

;; flags: qr QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11014

;; ANSWER SECTION:

. 0 CTRL TYPE11014 \# 15 A037F6D65646F6D61696

E620565700

;; Query time: 0 msec

;; WHEN: Mon Sep 29 14:55:20 2014

;; MSG SIZE rcvd: 43

0 2 5

unfreeze

This command enables updates to a zone. Modifications (dyn DNS) can be done again.

For example:

./yadifa -s 192.0.2.1 -t UNFREEZE -q somedomain.eu

Gives as result:

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 26357

;; flags: qr QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11015

;; ANSWER SECTION:

. 0 CTRL TYPE11015 \# 15 A037F6D65646F6D61696

E620565700

;; Query time: 0 msec

;; WHEN: Mon Sep 29 14:56:49 2014

;; MSG SIZE rcvd: 43

freezeall

This command suspends updates to all zones. No more modification (dyn DNS) can be done.

For example:

0 2 6

./yadifa -s 192.0.2.1 -t FREEZEALL

Gives as result:

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 49553

;; flags: qr QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11014

;; Query time: 0 msec

;; WHEN: Mon Sep 29 14:57:22 2014

;; MSG SIZE rcvd: 17

unfreezeall

This command enables updates to all zones. Modifications (dyn DNS) can be done again.

For example:

./yadifa -s 192.0.2.1 -t UNFREEZEALL

Gives as result:

0 2 7

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 33527

;; flags: qr QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11015

;; Query time: 0 msec

;; WHEN: Mon Sep 29 14:57:48 2014

;; MSG SIZE rcvd: 17

reload

This command reloads the zone file from disk.

For example:

./yadifa -s 192.0.2.1 -t RELOAD -q somedomain.eu

Gives as result:

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 1750

;; flags: qr QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11018

;; ANSWER SECTION:

. 0 CTRL TYPE11018 \# 15 A037F6D65646F6D61696

E620565700

;; Query time: 1 msec

;; WHEN: Mon Sep 29 15:01:34 2014

;; MSG SIZE rcvd: 43

0 2 8

zonecfgreload

This command rereads the zone config and reloads the zone file from disk.

For example:

./yadifa -s 192.0.2.1 -t ZONECFGRELOAD -q somedomain.eu

Gives as result:

;; global options:

;; Got answer:

;; ->>HEADER<<- opcode: ?, status: NOERROR, id: 49879

;; flags: qr QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;. CTRL TYPE11019

;; ANSWER SECTION:

. 0 CTRL TYPE11019 \# 15 A037F6D65646F6D61696

E620565700

;; Query time: 1 msec

;; WHEN: Tue Sep 30 09:39:23 2014

;; MSG SIZE rcvd: 43

0 2 9

7 DNSSEC

7.1 Introduction

The DNS provides responses without validating their source. This means that it is vulnerable to
the insertion of invalid or malicious information, a flaw discovered by Dan Kaminsky in 2008.

This technical report documents the various components of the long-term solution to this kind of
cache-poisoning attack: DNSSEC.

7.2 DNSSEC overview

In a nutshell, DNSSEC adds signatures to regular DNS responses in the form of Resource Record
Signature (RRSIG) resource records. A signature covers a resource record set. A resource record
set properly signed by a trusted source can be accepted as valid. Many signatures can cover the
same resource record set.

The RRSIG resource record is consistent in a hash1 of the covered resource record set along with
the validity period and other relevant information, signed with the private part of the owner’s key
pair 2.

To be able to verify whether the response is legitimate, the receiver of a signed response should
verify that each resource record set is verified by at least one of the signatures that covers it.

If this comparison shows no differences, the receiver is sure of two things:

Integrity - the response has not been modified

Authenticity - the response comes from the expected source

1A hash of a sequence of characters is the result of a one-way transformation of that sequence into a much smaller,
fixed-length sequence by applying a certain mathematical formula. The slightest change of the original sequence
changes the resulting hash. Thus, after transmission of the characters, one can detect changes to a sequence by
comparing its current hash with its original one.

2Public/private key encryption is well-known. A message is signed with the private part of a key pair (kept secret).
The resulting signed message can only be verified using the public part of the key pair (shared with everybody).

0 3 0

(the only one to possess the private part of the key pair).

Note that the response itself is not encrypted. DNSSEC adds RRSIG records to responses, but the
records that hold the data remain unaltered. In this way, DNSSEC is backwards compatible as
non DNSSEC-aware name servers can and should ignore unknown data and continue to function
as expected.

The challenge in this scenario is to get the public part of the key pair to the users who need it for
verification in a secure way.

The public parts of key pairs are available via the DNS as they are published as Domain Name
System KEY (DNSKEY) resource records. When querying for DNSKEY records, the response to a
query also holds a signature for the DNSKEY record. But the question remains, should the receiver
simply accept that the data is authentic and use it?

The answer is no. To verify the signature of a DNSKEY record, the user must consult the parent
of the domain name. For domain names, such as eurid.eu, the parent is the TLD. For a TLD, the
parent is the root domain. To enable users to obtain the public part of a signed domain name in a
secure way, a hash of the public key is put in the parent zone as a Delegation Signer (DS) resource
record.

There it is signed with the private part of the parent zone key pair. In the case of eurid.eu, a hash
of the public key (DS) is put in the .eu zone where it is signed with the private key of .eu. For the
.eu zone itself, a hash of the .eu public key (DS) is put in the root zone, where it is signed with the
private key of the root zone.

This means that the receiver can obtain the public part of a key pair by querying for its hash in
the parent zone, and verify its signature with the public part of that parent zone’s key pair. This
process only takes us up one level in the DNS hierarchy.

There the question repeats itself: how can the receiver trust the signature from that parent zone
file? The answer lies in applying the same procedure: retrieving the public part of its key, the hash
from its parent and the hash’s signature.

But ultimately, some trust must be built in.

Herein lies the importance of having a signed Internet root zone, because receivers that verify signa-
tures only need to trust the public key of the root zone. This is the only public key necessary and it
can be obtained outside the DNS. It is available for download in several different formats together
with a signature file at: http://data.iana.org/root-anchors/. Before the root zone was signed on
15 July 2010, administrators had to manually configure and maintain public key information from
different branches in the DNS tree.

It is also understandable that TLD operators are working hard to publish their data with signatures,
because it is only if a TLD is DNSSEC-enabled that receivers can find a completed chain of trust,
allowing them to easily verify domain name signatures within that TLD. Now that the root zone
is signed and TLDs sign their data as well, registrars are also able to sign their DNS data.

0 3 1

7.3 Types of key pairs

Two types of keys are used in DNSSEC:

The key-signing key (KSK) - used only to sign the hash of DNSKEY information

The zone -signing key (ZSK) - used to sign the hashes of all resource records (A , NS, MX,
etc).

The more signatures generated with a particular key pair, the greater the chance of a successful
crypto-attack, in other words deducing the private part of a key pair by using the public part and
the available signatures. To prevent the signing of false information, key pairs should not be used
indefinitely. Every so often, new key pairs should be generated and used to resign the zone. The
frequency of key generation depends on the strength of the algorithm, key length and how often a
key is used.

Because strong algorithms and long keys require more resources, such as more CPU, the practice
is to use a weaker key pair, the ZSK, for all signatures but to change it regularly. Validity of these
signatures should be three to six months at most. A stronger key pair, the KSK, is only used to
sign the public key information. The KSK is changed less frequently, every one to two years. Only
a hash of the KSK appears in the root zone (as the DS record). Since this key is changed, or rolled
over, less often, interaction with the parent is less frequent.

7.4 Algorithms

Several algorithms for calculating hashes and signatures have been defined. Specific name server
implementations or versions may not support all of the algorithms mentioned in the following
summary:

RSASHA1 (algorithm number 5) is declared mandatory by RFC 4034 . RSASHA1-NSEC3 - SHA1
(algorithm number 7) is defined by RFC 5155 . It is essentially the same algorithm as RSASHA1,
although the Next SECure records are NSEC3. The stronger algorithms, RSASHA256 (algorithm
number 8) and RSASHA512 (algorithm number 10) are both defined by RFC 5702.

The use of these latter algorithms is recommended, as attacks against SHA1 (used in algorithms
5 and 7) are increasing. Bear in mind that the newer algorithms, numbers 8 and 10, may not be
available in older DNS server implementations and, as verifying DNS name servers that do not
recognise an algorithm will treat the data as unsigned, it is unclear at the time of writing whether
end users will actually benefit from these stronger algorithms.

0 3 2

8 NSID

8.1 Introduction

The DNS infrastructure is an integral and critical part of the Internet and the robustness of this
system has constantly been improved since it was first used. The increased robustness has lead to
more complex setups where mechanisms like DNS anycast, name server pools and IP failovers allow
different name servers to be available from a single IP address. These complex setups can make
it very difficult to identify individual name servers. To identify different name servers, one could
query for a specific record which is unique to each of the name servers. However, this method will
not work for generic queries which comprise the bulk of all requests. NSID provides a solution by
including a unique identifier within any DNS response. This feature is an extension of the DNS
protocol. To allow backward compatibility, a name server that has the NSID extension will only
send an NSID when it is explicitly asked for. The information, in response to the NSID option in
the query, can be found in the EDNS OPT pseudo-RR in the response.

8.2 NSID payload

The NSID[3] option as a sequence of hexadecimal digits, two digits per payload octet.

The payload of NSID is a maximum of 512 bytes long and can consist of any combination of bytes.

The syntax and semantics of the content of the NSID option are deliberately left outside the scope
of this specification.

Examples of NSID:

It could be the “real” name of the specific name server within the name server pool.

It could be the “real” IP address (IPv4 or IPv6) of the name server within the name server
pool

It could be a pseudo-random number generated in a predictable fashion somehow using the
server’s IP address or name as a seed value

0 3 3

It could be a probabilistically unique identifier initially derived from a random number gen-
erator then preserved across reboots of the name server

It could be a dynamically generated identifier so that only the name server operator could
tell whether or not any two queries had been answered by the same server

It could be a blob of signed data, with a corresponding key which might (or might not) be
available via DNS lookups.

0 3 4

9 DNS Response Rate Limiting

9.1 Introduction

A typical Distributed Denial of Service (DDoS) attack relies on a great number of hosts to send
many requests simultaneously to disrupt a service. DNS is at the core of the Internet and when
this service is disrupted, many other services are disrupted as well as collateral damage. Therefore
many DNS service providers have made major investments in good connectivity to mitigate attacks
directed at their infrastructure. A DNS amplification attack is a special form of DDoS which
takes advantage of the stateless nature of DNS queries to create forged DNS requests. Answers to
these requests are sent to the actual target of the attack. The DNS protocol has been designed
with efficiency in mind. Therefore a typical request requires a minimal amount of bandwidth to
the name server, but can trigger a huge response which is typically many times larger than the
original request. These huge responses allow attackers to hedge their disposable bandwidth with
the bandwidth available at some DNS servers by making them unwilling participants in this special
form of DDoS.

9.2 What is it?

The DNS Response Rate Limiting is an algorithm that helps mitigating DNS amplification attacks.
The name servers have no way of knowing whether any particular DNS query is real or malicious,
but it can detect patterns and clusters of queries when they are abused at high volumes and can
so reduce the rate at which name servers respond to high volumes of malicious queries.

9.3 The problem

Any internet protocol based on UDP is suitable for use in a Denial of Service (DDoS) attack, but
DNS is especially well suited for such malevolence. There are several reasons:

Reflected/Spoofed attack

DNS servers cannot tell by examining a particular packet wether the source address in that
packet is real or not. Most DNS queries are done by UDP. UDP does not have source address

0 3 5

verification.

Small DNS queries can generate large responses

Especially when used with DNSSEC , the responses can be 10-20 (or more) times larger
than the question.

9.4 A solution

If one packet with a forged source address arrives at a DNS server, there is no way for the server to
tell it is forged. If hundreds of packets per second arrive with very similar source addresses asking
for similar or identical information, there is a very high probability that those packets, as a group,
form part of an attack. The Response Rate Limiting (RRL) algorithm has two parts. It detects
patterns in incoming queries, and when it finds a pattern that suggests abuse, it can reduce the
rate at which replies are sent.

Clients are grouped by their masked IPs, using ipv4-prefix-length and ipv6-prefix-length.

Clients are kept in a table with a size varying from min-table-size to max-table-size.

Responses-per-second is the maximum number of “no-error” answers that will be given to
a client in the duration of a second.

Errors-per-second is the maximum number of error answers that will be given to a client
in the duration of a second.

Window is the period for which the rates are measured. If the client goes beyond any of
its allowed rates, then the majority of further answers will be dropped until this period of
time has elapsed. Every slip dropped answers, a truncated answer may randomly be given,
llowing the client to ask the query again using TCP.

0 3 6

10 Configuration reference

10.0.1 Layout

The configuration file has some rules:

The configuration is read from a simple text file.

A comment starts after the ’#’ character.

Empty lines have no effect.

A string can be double quoted, but is not mandatory.

The configuration file is made up of sections. A section starts with a with a <name> line and ends
with a </name> line.

Currently the following sections are implemented:

main

zone

key

acl

channels

loggers

nsid

rrl

Unimplemented section names are ignored.

0 3 7

The section order is only of importance for sections of the same type where the principle first-
found-first-processed applies. In other words, the last settings will overwrite ealier declarations
of the same parameter. One exception is the <zone> section, where a declaration for the same
domain will result in the error DATABASE ZONE CONFIG DUP.

For example:

<zone>

domain somedomain.eu

file masters/somedomain.eu.txt

file masters/somedomain.eu.zone

type master

</zone>

<zone>

domain somedomain.eu

file masters/somedomain2.eu.txt

type master

</zone>

In this example for the zone somedomain.eu, the file will be “masters/somedomain.eu.zone”.

The processing order of each section type is determined by the server implementation.
Each section contains settings. A setting is defined on one line but can be spread over multiple
lines using parenthesis.

For example:

comment

comment

<first>

commment

setting0-name value ...

setting1-name value ...

</first>

<second>

setting2-name (

value

...

)

comment

</second>

0 3 8

10.1 Types

Each setting can be one of the following types.

TYPE DESCRIPTION

ACL A list of ACL descriptors. User-defined ACLs are found in the ‘acl’
section. The ‘any’ and ‘none’ descriptors are always defined. Elements
of the list are separated by a ‘,’ or a ‘;’.

DNSSECTYPE DNSSEC type of the zone. Can be no-dnssec (none, no, off, 0), or dnssec
(nsec, nsec3, nsec3-optout).

ENUM A word from a specified set.

FLAG A boolean value. It can be true (“1”, “enable”, “enabled”, “on”, “true”,
“yes”) or false (“0”, “disable”, “disabled”, “off”, “false”, “no”).

FQDN An Fully Qualified Domain Name (FQDN) text string. i.e.:
www.eurid.eu.

GID Group ID. (Can be a number or a name)

HOST(S) A (list of) host(s). A host is defined by an IP (v4 or v6) and can be
followed by the word ‘port’ and a port number. Elements of the list are
separated by a ‘,’ or a ‘;’.

INTEGER / INT A base-ten integer.

PATH A file or directory path. i.e.: ‘/var/zones’.

STRING / STR A text string. Double quotes can be used but are not mandatory. With-
out quotes the string will be taken from the first non-blank charater to
the last non-blank character.

UID User ID. (Can be a number or a name)

Table 10.1: Types

10.2 Sections

The ‘main’ section

This section defines the global or default settings of the server.

PARAMETER TYPE DEFAULT DESCRIPTION

additional-from-auth FLAG true If this flag is enabled, the server will
reply with the additional section.

allow-control ACL none Default server-control access control
list, Only the sources matching the
ACL are accepted.

0 3 9

allow-notify ACL any Default notify access control list.
Only the servers matching the ACL
will be handled.

allow-query ACL any Default query access control list.
Only the clients matching the ACL
will be replied to.

allow-transfer ACL none Dedault transfer access control list.
Only the clients matching the ACL
will be allowed to transfer a zone
(AXFR/IXFR).

allow-update ACL none Default update access control list.
Only the clients matching the ACL
will be allowed to update a zone.

allow-update-forwarding ACL none Default update-forwarding access
control list. Only the sources
matching the ACL are accepted.

answer-formerr-packets FLAG true If this flag is disabled, the server will
not reply to badly formatted pack-
ets.

authority-from-auth FLAG true If this flag is enabled, the server will
reply with the authority section.

axfr-compress-packets FLAG true Enables the DNS packet compres-
sion of each AXFR packet.

axfr-max-packet-size INT 4096 bytes The maximum size of an AXFR
packet. (MIN: 512, MAX: 65535)

axfr-max-record-by-packet INT 0 The maximum number of records
in each AXFR packet. Older name
servers can only handle 1. Set to 0
to disable the limit.

axfr-retry-delay INT 600 sec Number of seconds between each
retry for the first transfer from the
master name server.

axfr-retry-jitter INT 180 sec Jitter applied to axfr-retry-delay.

chroot FLAG off Enabling this flag will make the
server jail itself in the chroot-path
directory.

chroot-path PATH / The directory used for the jail.

cpu-count-override INT 0 Overrides the detected number of
logical cpus (0 : automatic, MAX:
256).

daemon FLAG true Enabling this flag will make the
server detach from the console and
work in background.

data-path PATH /var/zones The base path were lies the data
(base zone file path, journaling data,
temporary files, etc.)

0 4 0

dnssec-thread-count INT 0 The maximum number of threads
used for DNSSEC parallel tasks
(mostly signatures) (0 : automatic,
MAX: 128)

edns0-max-size INT 4096 bytes EDNS0 packets size.

gid GID 0 The group ID that the server will
use.

keys-path PATH /var/zones/keys The base path of the DNSSEC keys.

listen HOST(S) 0.0.0.0 The list of interfaces to listen to.

log-path PATH /var/log The base path where the log files are
written.

max-tcp-queries INT 5 The maximum number of parallel
TCP connections, allowed. (MIN:
0, MAX: 512)

pid-file STR yadifa.pid The pid file name.

pid-path PATH /var/run The path for the pid file.

queries-log-type INT 1 Query log format. (0: none, 1:
YADIFA format, 2: BIND format,
3: YADIFA and BIND format at
once)

server-port,port INT 53 The default dns port. (MIN: 1,
MAX:65535)

sig-validity-interval INT 31 days The number of hours for which an
automatic signature is valid. (MIN:
7 days , MAX: 366 days)

sig-validity-jitter, sig-jitter INT 3600 sec The signature expiration validity
jitter in seconds (1 hour). (MIN: 0,
MAX: 86400 sec)

sig-validity-regeneration INT auto hours Signatures expiring in less than the
indicated amount of hours will be
recomputed. (MIN: 24 hours, MAX:
168 hours, default: chosen by YAD-
IFA)

statistics FLAG true The server will log a report line
about some internal statistics.

statistics-max-period INT 60 sec The period in seconds between two
statistics log lines. (MIN: 1, MAX:
31 days)

tcp-query-min-rate INT 4096 bytes / sec The minimum rate required in a
TCP connection (read and write).
Slower connections are closed. The
units are bytes per second.

0 4 1

thread-count-by-address INT 0 Number of independent threads
used to process each listening ad-
dress. (0: single threaded, MAX:
number of CPU’s, -1: YADIFA
chooses)

uid UID 0 The user ID that the server will use.

version-chaos STR ”yadifa version#” The string returned by a version
TXT CH query.

xfr-connect-timeout INT 5 sec Timeout for establishing a connec-
tion for AXFR and IXFR transfers.

xfr-path PATH /var/zones/xfr The base path used for AXFR and
journal storage.

Table 10.2: Parameters main section

For example:

0 4 2

<main>

chroot on

daemonize true

chroot-path /srv/yadifa/var

keys-path /zones/keys

data-path /zones

log-path /log

pid-path /run

pid-file yadifa.pid

cpu-count-override 6

dnssec-thread-count 10

max-tcp-queries 100

tcp-query-min-rate 6000

additional-from-auth yes

authority-from-auth yes

answer-formerr-packets no

server-port 53

listen 192.0.2.53, 192.0.2.153 port 8053

uid yadifad

gid yadifad

statistics yes

statistics-max-period 60

could have been written as: ’version not disclosed’ without the ’

version "not disclosed"

note: Any is default anyway

allow-query any

allow-update operations-network ; public-network

allow-transfer slaves ; operations-network ; public-network

sig-signing-type 65542

sig-validity-interval 360

sig-validity-regeneration 48

sig-validity-jitter 1800

axfr-max-record-by-packet 0

axfr-max-packet-size 32768

axfr-compress-packets true

</main>

0 4 3

The ‘zone’ sections

Each zone is defined by one section only.

sig-* and allow-* settings defined here have precedence over those in the ‘main’ section.

For example:

<zone>

domain somedomain.eu.

type master

file-name masters/somadomain.eu-signed.txt

The rest is not mandatory ...

also-notify 192.0.2.194, 192.0.2.164

Doing this is pointless since it’s both the global setting AND

the default one

allow-query any

allow-update my-network; 127.0.0.1

allow-transfer my-slaves

Same as global setting

sig-signing-type 65542

sig-validity-interval 720 # 30 days is enough

sig-validity-regeneration 12

sig-validity-jitter 7200

</zone>

<zone>

domain another-zone.eu

type slave

master 192.0.2.53

</zone>

The ‘key’ sections

Each TSIG key must be defined by one section.

For example:

0 4 4

PARAMETER TYPE DEFAULT DESCRIPTION

notify-auto FLAG TRUE (TRUE: DNS NOTIFY[9] will be send
to all name servers in APEX, FALSE: the
content of APEX will be ignored)

no-master-
updates

FLAG FALSE If set to true, the slave will not probe nor
download changes from the master.

notify-retry-count INT 5 Number of times YADIFA tries to send a
DNS NOTIFY[9] .

notify-retry-
period

INT 1 Time period between two DNS
NOTIFY[9] attempts.

notify-retry-
period-increase

INT 0 Increase of the time period between two
DNS NOTIFY[9] attempts.

allow-notify ACL as main Notify access control list. Only the servers
matching the ACL will be handled.

allow-query ACL as main Query access control list. Only the clients
matching the ACL will be replied to.

allow-transfer ACL as main Tansfer access control list. Only the
clients matching the ACL will be allowed
to transfer a zone (AXFR/IXFR).

allow-update ACL as main Update access control list. Only the
clients matching the ACL will be allowed
to update a zone.

allow-update-
forwarding

ACL as main Update forwarding control list. Only the
matching sources are allowed.

allow-control ACL as main Control commands control list. Only the
matching sources are allowed.

also-notify HOST(S) - The list of servers to notify in the event of
a change. Currently only used by masters
when a dynamic update occurs.

dnssec-mode DNSSECTYPE none Type of DNSSEC used for the zone. As
master name sever, YADIFA will try to
maintain that state.

domain FQDN - Mandatory. Sets the domain of the zone
(i.e.: eurid.eu).

file-name, file PATH - Sets the zone file name. Only mandatory
for a master zone.

master HOST - Mandatory for a slave. Sets the master
server. Only one is supported.

sig-validity-
interval

INTEGER as main The number of hours for which an auto-
matic signature is valid. (MIN: 7 days ,
MAX: 366 days)

sig-validity-jitter,
sig-jitter

INTEGER as main The signature expiration validity jitter in
seconds (1 hour). (MIN: 0, MAX: 86400
sec)

sig-validity-
regeneration

INTEGER as main The signatures expiring in less than the
indicated amount of hours will be recom-
puted. (MIN: 24 hours, MAX: 168 hours,
default: chosen by YADIFA)

type ENUM - Mandatory. Sets the type of zone : either
‘master’ or ‘slave’.

Table 10.3: Parameters zone sections

0 4 5

PARAMETER TYPE DEFAULT DESCRIPTION

algorithm ENUM - Mandatory. Sets the algorithm of
the key. Supported values are ‘hmac-
md5’, ‘hmac-sha1’, ‘hmac-sha224’, ‘hmac-
sha256’, ‘hmac-sha384’, ‘hmac-sha512’
(the algorithm names are case insensitive)

name FQDN - Mandatory. Sets the name of the key.

secret TEXT - Mandatory. Sets the value of the key.
BASE64 encoded.

Table 10.4: Parameters key sections

<key>

name yadifa

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

<key>

name eu-slave1

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

<key>

name eu-slave2

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

The ‘acl’ section

Each entry of the acl section defines a rule of access. Each rule is a name (a single user-defined
word) followed by a rule in the form of a list of statements. The separator can be ‘,’ or ‘;’. The
‘any’ and ‘none’ names are reserved. A statement tells if a source is accepted or rejected. Reject
statements are prefixed with ‘!’. Statements are evaluated in the following order: first from more
specific to less specific, then from reject to accept. If a statement matches, the evaluation will stop
and accordingly accept or reject the source. If no statement matches, then the source is rejected.

A statement can be either:

An IPv4 or an IPv6 address followed (or not) by a mask.

0 4 6

[!]ipv4|ipv6[/mask]

For example:

internal-network 192.0.2.128/26;2001:DB8::/32

The word ‘key’ followed by the name of a TSIG key.
key key-name

For example:

slaves key public-slave;key hidden-slave

An ACL statement name from the ‘acl’ section. Note that negation and recursion are forbid-
den and duly rejected.
acl-name

For example:

who-can-ask-for-an-ixfr master;slaves;127.0.0.1

For example:

0 4 7

<acl>

user-defined-name rule-statements

rule to accept this TSIG key

slave1 key eu-slave1

rule to accept that TSIG key

slave2 key eu-slave2

rule to accept what the slave1 and slave2 rules are accepting

slaves slave1;slave2

rule to accept this IP

master 192.0.2.2

rule to accept both this IPv4 network and that IPv6 network

operations 192.0.2.128/28;2001:DB8::/32

Now about the order of each ACL statement : the following rule

order-example-1 192.0.2.128/26 ; 192.0.2.5 ;

! 192.0.2.133 ; ! 192.0.2.0/26

will be understood the same way as this one

order-example-2 192.0.2.5 ; !192.0.2.133 ;

192.0.2.128/26 ; !192.0.2.0/26

Because in effect, both will be seen internally as:

order-example-3 !192.0.2.133 ; 192.0.2.5 ;

!192.0.2.0/26 ; 192.0.2.128/26

</acl>

The ‘channels’ section

Channels are loggers output stream definitions. Three types are supported:

file

0 4 8

PARAMETER DESCRIPTION

auth Security/authorisation messages (DEPRECATED: use authpriv)

authpriv Security/authorisation messages (private)

cron Clock daemon (cron and at)

daemon System daemons without separate facility value

ftp Ftp daemon

local0 Reserved for local use

local1 Reserved for local use

local2 Reserved for local use

local3 Reserved for local use

local4 Reserved for local use

local5 Reserved for local use

local6 Reserved for local use

local7 Reserved for local use

lpr Line printer subsystem

mail Mail subsystem

news USENET news subsystem

syslog Messages generated internally by syslogd(8)

user Generic user-level messages

uucp UUCP subsystem

Table 10.5: Parameters syslog

STDOUT, STDERR

syslog.

Each channel is a name (a single user-defined word) followed by:

the ‘syslog’ keyword, defining a channel to the syslog daemon. The keyword can be followed
by case-insensitive facilities and options arguments. These arguments will be given to syslog.

Supported facilities:

Supported options:

Note:

For more information: man syslog

For example:

syslog syslog CRON,PID

The ‘STDOUT’ case-sensitive keyword, defining a channel writing on the standard output.

0 4 9

PARAMETER DESCRIPTION

cons Write directly to system console if there is an error while sending
to system logger.

ndelay Open the connection immediately (normally, the connection is
opened when the first message is logged).

nowait Don’t wait for child processes that may have been created while
logging the message (On systems where it is relevant).

odelay Opening of the connection is delayed until syslog() is called (This
is the default, and need not be specified).

perror (Not in POSIX.1-2001.) Print to stderr as well.

pid Include PID with each message.

Table 10.6: Parameters for channels

For example:

default-output STDOUT

The ‘STDOUT’ case-sensitive keyword, defining a channel writing on the standard output.

The ’STDERR’ case-sensitive keyword, defining a channel writing on the standard error.

For example:

default-error STDERR

A relative file path, defining a channel writing on a file (append at the end). The file is
followed by the file rights as an octal number.

For example:

yadifa yadifa.log 0644

For example:

0 5 0

<channels>

user-defined-name parameters

channel ’statistics’: a file called stats.log

with 0644 access rights

#

statistics stats.log 0644

channel ’syslog’ : a syslog daemon output using

the local6 facility and logging the pid of the process

#

syslog syslog local6,pid

channel ’yadifa’: a file called yadifa.log with 0644 access rights

#

yadifa yadifa.log 0644

channel ’debug-out’ : directly printing to stdout

#

debug-out STDOUT

channel ’debug-err’ : directly printint to stderr

#

debug-err STDERR

</channels>

The ‘loggers’ section

Yadifa has a set of log sources, each of which can have their output filtered (or ignored) and sent
to a number of channels.

A logger line is defined as the source name followed by the list of levels and then the list of channels.
The lists are ‘,’ separated.

The current set of sources is:

The current set of levels is:

Note:

Messages at the ‘crit’, ‘alert’ and ‘emerg’ levels do trigger an automatic shutdown of the server.

0 5 1

SOURCES DESCRIPTION

database Database output (incremental changes, integrity checks, etc.)

dnssec DNSSEC output (NSEC, NSEC3, signatures events)

server Server actions output (network setup, database setup, queries, etc.)

statistics Internal statistics periodic output

system Low-level output (thread management, task scheduling, timed events)

zone Internal zone loading output

queries Queries output

Table 10.7: logger sources

LEVELS DESCRIPTION

emerg System is unusable

alert Action must be taken immediately

crit Critical conditions

err Error conditions

warning Warning conditions

notice Normal, but significant, condition

info Informational message

debug Debug-level 0 message

debug1 Debug-level 1 message

debug2 Debug-level 2 message

debug3 Debug-level 3 message

debug4 Debug-level 4 message

debug5 Debug-level 5 message

debug6 Debug-level 6 message

debug7 Debug-level 7 message

prod All non-debug levels

all All levels

* All levels

Table 10.8: logger levels

0 5 2

If the logger section is omitted completely, everything is logged to the STDOUT channel. Negations
are not allowed.

For example:

<loggers>

info, notice and warning level messages from the database logging

will be outp

database info,notice,warning yadifa

database err,crit,alert,emerg yadifa,syslog

server * yadifa

stats * statistics

system * debug-err

queries * queries

zone * yadifa

</loggers>

The ‘nsid’ section

If you want to have NSID support in YADIFA you need to enable this function before compiling
the sources.

./configure --enable-nsid

After the ‘configure’, you can do the normal ‘make’ and ‘make install’.

make

make install

PARAMETER TYPE DEFAULT DESCRIPTION

ascii STR ” The string can be 512 characters
long.

hex ”

0 5 3

Table 10.9: Parameters nsid section

For example:

<nsid>

ascii belgium-brussels-01

</nsid>

For example:

<nsid>

hex 00320201

</nsid>

The ‘rrl’ section

If you want to have RRL support in YADIFA you need to enable this function before compiling
the sources.

./configure --enable-rrl

After the ‘configure’, you can do the normal ‘make’ and ‘make install’.

make

make install

TYPE DESCRIPTION

Table 10.10: Types

PARAMETER TYPE DEFAULT DESCRIPTION

responses-per-second INT 5 Allowed response rate.

0 5 4

errors-per-second INT 5 Allowed error rate.

slip INT 2 Random slip parameter.

log-only FLAG false If set to true, logs what it should do
without doing it.

ipv4-prefix-length INT 24 Mask applied to group the IPv4
clients.

ipv6-prefix-length INT 56 Mask applied to group the IPv6
clients.

exempt-clients,exempted ACL none Clients maching this rule are not
subject to the RRL.

enabled FLAG false Enables the RRL

min-table-size INT 1024 RRL buffer minimum size

max-table-size INT 16384 RRL buffer maximum size

window INT 15 RRL sliding window size in seconds

For example:

<rrl>

responses-per-second 5

errors-per-second 5

slip 10

log-only off

ipv4-prefix-length 24

ipv6-prefix-length 56

exempt-clients none

enabled yes

</rrl>

0 5 5

11 Zones

Only textual zones are implemented.

The format of a zone file is defined in RFC 1034[6] and RFC 1035[7].

For example:

;; Example domain

$TTL 86400 ; 24 hours

$ORIGIN somedomain.eu.

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (

1

3600

1800s

3600000s

600

)

86400 IN MX 10 mail.somedomain.eu.

86400 IN NS ns1.somedomain.eu.

ns1.somedomain.eu. 86400 IN A 192.0.2.2

mail.somedomain.eu. 86400 IN A 192.0.2.3

www.somedomain.eu. 86400 IN A 192.0.2.4

11.1 MACROS

Some macros are implemented:

@

0 5 6

$TTL

$ORIGIN

11.1.1 @

Use as a name, the @ symbol is replaced by the current origin.
The initial value is the domain field of the <zone> section.

For example:

<zone>

domain somedomain.eu

...

</zone>

For example:

;; The following @ is seen as somedomain.eu.

@ 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (

1

3600

1800s

3600000s

600

)

11.1.2 $TTL

This macro is the TTL value that is to be set for the resource records with an undefined TTL.

For example:

0 5 7

;; The following @ is seen as somedomain.eu.

$TTL 3600

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (

1

3600

1800s

3600000s

600

)

ns1.somedomain.eu. 86400 A 192.0.2.2

mail.somedomain.eu. 86400 A 192.0.2.3

www.somedomain.eu. 86400 A 192.0.2.4

A 192.0.2.5

ftp.somedomain.eu. A 192.0.2.6 ;; The TTL will be set using $TTL

11.1.3 $ORIGIN

The value of this macro is appended to any following domain name not terminating with a “.”.
The initial value is the domain field of the <zone> section.

For example:

;; The following @ is seen as somedomain.eu.

$TTL 3600

$ORIGIN somedomain.eu.

somedomain.eu. 86400 IN SOA ns1 info (

1

3600

1800s

3600000s

600

)

ns1 86400 A 192.0.2.2

mail 86400 A 192.0.2.3

www 86400 A 192.0.2.4

0 5 8

11.2 Classes

YADIFA knows only one class:

IN [7].

11.3 Resource record types

As master name server, YADIFA knows only the following resource record (RR) types. Everything
else will give an error and be ignored.

SOA

A

AAAA

CNAME

DNSKEY

DS

HINFO

MX

NAPTR

NS

NSEC

NSEC3

NSEC3PARAM

PTR

RRSIG

SRV

SSHFP

TLSA

TXT

WKS.

0 5 9

12 Statistics

YADIFAD has a range of statistics available with one configuration setting. The statistics values
are grouped into inputs, outputs and the RRL. Groups are a name followed by an open parenthesis
containing several space-separated event=count fields and ending in a closed parenthesis.

A single line of statistics looks as follows:

udp (in=303 qr=303 ni=0 up=0 dr=0 st=91191 un=0) tcp (in=369 qr=368 ni=0 up=0 dr=0 st=82477 un=0 ax=0 ix=0

ov=0) udpa (OK=242 FE=0 SF=0 NE=0 NI=0 RE=61 XD=0 XR=0 NR=0 NA=0 NZ=0 BV=0 BS=0 BK=0 BT=0

BM=0 BN=0 BA=0 TR=0) tcpa (OK=209 FE=0 SF=0 NE=0 NI=0 RE=159 XD=0 XR=0 NR=0 NA=0 NZ=0 BV=0

BS=0 BK=0 BT=0 BM=0 BN=0 BA=0 TR=0) rrl (sl=0 dr=0)

You can clearly see the groups containing the event=count fields. There are currently 5 groups
defined:

udp(. . .) covers the UDP messages

udpa(. . .) covers the UDP messages answers

tcp(. . .) covers the TCP messages

tcpa(. . .) covers the TCP messages answers

rrl(. . .) covers the RRL events

The messages counts the various events about the messages from the clients.

in input count
counts the number of DNS messages received

qr query count
counts the number of queries among the DNS messages

0 6 0

ni notify count
counts the number of notifications among the DNS messages

up update count
counts the number of updates among the DNS messages

dr dropped count
counts the number of DNS messages dropped

st total bytes sent (simple queries only)
counts the total number of bytes sent

un undefined opcode count
counts the number of undefined opcodes among the DNS messages

ax axfr query count (tcp only)
counts the number of full zone transfers queried

ix ixfr query count (tcp only)
counts the number of incremental zone transfers queried

ov connection overflow (tcp only)
counts the number of times the TCP pool has been full when a new connection came in

The messages answers counts the status of DNS answers sent to the clients.

OK NOERROR answer count

FE FORMERR answer count

SF SERVFAIL answer count

NE NXDOMAIN answer count

NI NOTIMP answer count

RE REFUSED answer count

XD YXDOMAIN answer count

XR YXRRSET answer count

NR NXRRSET answer count

NA NOTAUTH answer count

NZ NOTZONE answer count

BV BADVERS answer count

BS BADSIG answer count

BK BADKEY answer count

0 6 1

BT BADTIME answer count

BM BADMODE answer count

BN BADNAME answer count

BA BADALG answer count

TR BADTRUNC answer count

The RRL group only counts the two main events of the Response Rate Limiter.

dr dropped answer count
counts the number of times an answer has been dropped

sl truncated answer count
counts the number of times an answer that should have been dropped has been sent truncated
instead

0 6 2

Bibliography

[1] R. Arends. Resource Records for the DNS Security Extensions, March 2005. RFC 4034.

[2] R. Arends. NS Security (DNSSEC) Hashed Authenticated Denial of Existence, March 2008.
RFC 5515.

[3] R. Austein. DNS Name Server Identifier (NSID) Option, August 2007. RFC 5001.

[4] S. Kwan. Secret Key Transaction Authentication for DNS (GSS-TSIG), October 2003. RFC
3645.

[5] E. Lewis. DNS Zone Transfer Protocol (AXFR), June 2010. RFC 5936.

[6] Paul Mockapetris. DOMAIN NAMES - CONCEPTS AND FACILITIES, November 1987.
RFC 1034.

[7] Paul Mockapetris. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION,
November 1987. RFC 1035.

[8] M. Ohta. Incremental Zone Transfer in DNS, August 1996. RFC 1995.

[9] Paul Vixie. DNS NOTIFY, August 1996. RFC 1996.

[10] Paul Vixie. DNS UPDATE, April 1997. RFC 2136.

[11] Paul Vixie. EXTENSION MECHANISMS FOR DNS (EDNS0), August 1999. RFC 2671.

0 6 3

http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc5155.txt
http://www.ietf.org/rfc/rfc5001.txt
http://www.ietf.org/rfc/rfc3645.txt
http://www.ietf.org/rfc/rfc3645.txt
http://www.ietf.org/rfc/rfc5936.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1995.txt
http://www.ietf.org/rfc/rfc1996.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2671.txt

Index

bin
yadifa, 14, 23

configuration
additional-from-auth, 39
algorithm, 46
allow-control, 39, 45
allow-notify, 40, 45
allow-query, 40, 45
allow-transfer, 40, 45
allow-update, 40, 45
allow-update-forwarding, 40, 45
also-notify, 45
answer-formerr-packets, 40
authority-from-auth, 40
axfr-compress-packets, 40
axfr-max-packet-size, 40
axfr-max-record-by-packet, 40
axfr-retry-delay, 40
axfr-retry-jitter, 40
chroot, 40
chroot-path, 40
cpu-count-override, 40
daemon, 40
data-path, 40
database, 52
dnssec, 52
dnssec-mode, 45
dnssec-thread-count, 41
domain, 45
edns0-maxsize, 41
enabled, 55
file-name, 45
gid, 41
keys-path, 41
listen, 41
log-path, 41
master, 45
max-tcp-queries, 41
name, 46

no-master-updates, 45
notify-auto, 45
notify-retry-count, 45
notify-retry-period, 45
notify-retry-period-increase, 45
nsid

ascii, 53
hex, 53

pid-file, 41
pid-path, 41
queries, 52
queries-logtype, 41
rrl

errors-per-second, 55
exempt-clients, 55
ipv4-prefix-length, 55
ipv6-prefix-length, 55
log-only, 55
max-table-size, 55
min-table-size, 55
responses-per-second, 54
slip, 55
window, 55

secret, 46
server, 52
server-port, 41
sig-validity-interval, 41, 45
sig-validity-jitter, 41, 45
sig-validity-regeneration, 41, 45
statistics, 41, 52
statistics-max-period, 41
system, 52
tcp-query-min-rate, 41
thread-count-by-address, 42
type, 45
uid, 42
version-chaos, 42
xfr-connect-timeout, 42
xfr-path, 42
zone, 52

0 6 4

Denial of Service, 35
Denial of Service (DoS), 1
Distributed Denial of Service, 35
Distributed Denial of Service (DDoS), 1
DNS Name Server Identifier Option, 3, 33, 53
DNS Name Server Identifier Option (NSID), 1

pseudo resource type
NSID, 33

resource record, 59
resource record (RR), 59
resource type

NSEC, 7
NSEC3, 7

response rate limiting, 36, 54
Response Rate Limiting (RRL), 36
rfc, 7, 21

1034, 56
1035, 56
AXFR, 7, 21
dns notify, 45
dns update, 21
EDNS0, 7
IXFR, 7, 21
TSIG, 18, 23

sbin
yadifad, 14

0 6 5

	Introduction
	Domain Name System
	Zones
	Authoritative name servers

	Resource Requirements
	Hardware
	CPU
	Memory
	Supported Operating Systems

	Installation
	Server installation
	Client installation

	Server configuration
	An authoritative name server
	Primary name server
	Slave name server

	Signals

	Server Technical
	Zone file reader
	Known types

	Client
	YADIFA
	Commands

	DNSSEC
	Introduction
	DNSSEC overview
	Types of key pairs
	Algorithms

	NSID
	Introduction
	NSID payload

	DNS Response Rate Limiting
	Introduction
	What is it?
	The problem
	A solution

	Configuration reference
	Layout
	Types
	Sections

	Zones
	MACROS
	@
	$TTL
	$ORIGIN

	Classes
	Resource record types

	Statistics
	Bibliography

